# Core data science libraries pandas>=1.3.0 numpy>=1.21.0 # Machine learning scikit-learn>=1.0.0 joblib>=1.1.0 # Data visualization matplotlib>=3.5.0 seaborn>=0.11.0 # Jupyter ecosystem jupyterlab>=3.0.0 ipython>=7.0.0 # Data acquisition kaggle>=1.5.0 # Model persistence and deployment pickle-mixin>=1.0.2 # Performance monitoring memory-profiler>=0.60.0 # Optional: Advanced ML libraries imbalanced-learn>=0.8.0 # Handle class imbalance xgboost>=1.5.0 # Alternative ensemble method lightgbm>=3.3.0 # Fast gradient boosting # Optional: Deep learning (if extending to neural networks) tensorflow>=2.8.0 keras>=2.8.0 # Development dependencies pytest>=6.0.0 # Testing framework black>=22.0.0 # Code formatting flake8>=4.0.0 # Linting # Security and validation adversarial-robustness-toolbox>=1.10.0 # Adversarial attack testing