Project 029: Optical Network Fault Prediction

Infrastructure Monitoring & Fault Detection

Objective

Build a machine learning model that can predict an impending fault in an optical network device (like an amplifier or transceiver) by analyzing its real-time performance metrics.

Business Value

- Predictive Maintenance: Prevent costly optical network outages through early fault detection

- Service Continuity: Maintain high availability for critical communication services

- Cost Reduction: Reduce emergency repairs and minimize truck rolls for maintenance

- SLA Compliance: Ensure service level agreements by proactive fault management

- Resource Optimization: Schedule maintenance during planned windows instead of emergency situations

Core Libraries

- scikit-learn: Random Forest Classifier for fault prediction and model evaluation

- pandas: Dataset manipulation and time-series analysis

- numpy: Numerical computations and signal processing

- matplotlib/seaborn: Data visualization and optical signal analysis

- kaggle: API for accessing the Optical Network Intrusion Dataset

Dataset

- Source: Kaggle - "Optical Network Intrusion Dataset"

- Size: Time-series optical signal properties and performance metrics

- Features: Optical power levels, OSNR measurements, signal quality indicators

- Labels: Stable vs. unstable/pre-fault conditions

- Type: Time-series optical network telemetry data

Step-by-Step Guide

1. Environment Setup

# Create virtual environment

python -m venv optical_fault_env

source optical_fault_env/bin/activate # On Windows: optical_fault_env\Scripts\activate

# Install required packages

pip install pandas numpy scikit-learn matplotlib seaborn kaggle

2. Data Collection and Preparation

# Download dataset using Kaggle API

import kaggle

kaggle.api.dataset_download_files('561616/optical-network-intrusion-dataset',

path='.', unzip=True)

# Load and preprocess optical telemetry data

import pandas as pd

df = pd.read_csv('optical_data/Optical_Intrusion_Dataset.csv')

# Rename target column for fault prediction context

df.rename(columns={'Intrusion': 'Fault_Condition'}, inplace=True)

df = df.drop(columns=['Unnamed: 0']) # Remove ID column

3. Feature Engineering

from sklearn.preprocessing import LabelEncoder

# Encode target variable: 'No' -> 0 (Stable), 'Yes' -> 1 (Unstable/Fault)

le = LabelEncoder()

df['Fault_Condition'] = le.fit_transform(df['Fault_Condition'])

# Key optical features for fault prediction

optical_features = [col for col in df.columns if col != 'Fault_Condition']

X = df[optical_features]

y = df['Fault_Condition']

4. Model Training

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

# Split data maintaining class distribution

X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.3, random_state=42, stratify=y

)

# Train Random Forest with class balancing

model = RandomForestClassifier(

n_estimators=100,

random_state=42,

n_jobs=-1,

class_weight='balanced'

)

model.fit(X_train, y_train)

5. Model Evaluation

from sklearn.metrics import classification_report, confusion_matrix

y_pred = model.predict(X_test)

# Evaluate with focus on recall for fault detection

print("Classification Report:")

print(classification_report(y_test, y_pred,

target_names=['Stable', 'Unstable/Fault']))

# Confusion matrix for fault prediction assessment

cm = confusion_matrix(y_test, y_pred)

6. Feature Importance Analysis

import matplotlib.pyplot as plt

import seaborn as sns

# Analyze which optical metrics predict faults

importances = model.feature_importances_

features = X.columns

feature_df = pd.DataFrame({

'Feature': features,

'Importance': importances

}).sort_values('Importance', ascending=False)

# Visualize top predictive optical metrics

plt.figure(figsize=(12, 8))

sns.barplot(data=feature_df.head(15), x='Importance', y='Feature')

plt.title('Top 15 Optical Metrics for Fault Prediction')

plt.show()

Success Criteria

- High Recall (>90%): Catch most impending faults to prevent outages

- Balanced Precision: Minimize false alarms that could overwhelm operations teams

- Early Warning: Detect pre-fault conditions with sufficient lead time for action

- Interpretable Results: Clear understanding of which optical metrics indicate problems

Next Steps & Extensions

1. Real-time Integration: Deploy with optical line system telemetry for live monitoring

2. Fault Severity Classification: Predict severity levels and expected time to failure

3. Automated Response: Integrate with network automation for automatic rerouting

4. Multi-vendor Support: Adapt for different optical equipment manufacturers

5. Predictive Scheduling: Optimize maintenance windows based on fault predictions

6. Environmental Factors: Include temperature, humidity, and other external conditions

Files Structure

029_Optical_Network_Fault_Prediction/

├── README.md

├── optical_fault_prediction.ipynb

├── requirements.txt

└── data/

└── (Kaggle dataset files)

Running the Project

1. Set up Kaggle API credentials

2. Execute the Jupyter notebook step by step

3. Analyze optical signal patterns and fault indicators

4. Review feature importance for optical engineering insights

This project demonstrates how machine learning can enhance optical network reliability by predicting equipment failures before they cause service disruptions, enabling proactive maintenance strategies.