Project 031: Predicting Cloud Network Egress Costs

Cost Forecasting & Time-Series Analysis

Objective

Build a time-series forecasting model that can predict daily network egress costs for a cloud environment based on historical usage patterns, enabling accurate budget planning and cost optimization.

Business Value

- Financial Planning: Accurate forecasting for quarterly and annual cloud budget allocation

- Cost Optimization: Identify patterns to implement data transfer optimization strategies

- Anomaly Detection: Detect unusual cost spikes that may indicate misconfigurations or security issues

- Budget Control: Prevent unexpected overspend on cloud egress charges

- Capacity Planning: Predict when egress patterns require infrastructure changes

Core Libraries

- prophet: Time-series forecasting with automatic seasonality detection and trend analysis

- pandas: Time-series data manipulation and date handling

- numpy: Numerical computations and statistical operations

- scikit-learn: Model evaluation metrics

- matplotlib: Time-series visualization and forecast plotting

Dataset

- Source: Synthetically Generated (realistic daily egress cost data)

- Size: 730 days (2 years) of historical cost data

- Features: Date (ds) and daily egress cost (y)

- Patterns: Weekly seasonality, growth trends, random spikes, weekend reductions

- Type: Time-series regression with temporal dependencies

Step-by-Step Guide

1. Environment Setup

# Create virtual environment

python -m venv egress_cost_env

source egress_cost_env/bin/activate # On Windows: egress_cost_env\Scripts\activate

# Install required packages

pip install pandas numpy scikit-learn matplotlib prophet

2. Data Generation and Preparation

# Generate realistic time-series egress cost data

import pandas as pd

import numpy as np

# Create 2 years of daily data with realistic patterns

days = 730

cost_per_gb = 0.05

start_date = pd.to_datetime('2022-01-01')

dates = pd.date_range(start_date, periods=days, freq='D')

# Combine multiple patterns: trend + seasonality + noise + spikes

trend = np.linspace(500, 1500, days) # Growth from 500GB to 1500GB/day

weekly_seasonality = np.sin(dates.dayofweek (2 np.pi / 7)) * 100

weekend_reduction = np.where(dates.dayofweek >= 5, 0.2, 1.0) # 80% reduction on weekends

noise = np.random.normal(0, 50, days)

spikes = np.random.choice([0, 1], size=days, p=[0.97, 0.03]) * np.random.uniform(500, 1000, days)

# Calculate final egress cost

egress_gb = (trend + weekly_seasonality * weekend_reduction + noise + spikes)

egress_gb = np.maximum(100, egress_gb) # Minimum 100GB/day

cost_usd = egress_gb * cost_per_gb

# Create Prophet-compatible DataFrame

df = pd.DataFrame({'ds': dates, 'y': cost_usd})

3. Data Exploration and Visualization

import matplotlib.pyplot as plt

# Visualize time-series patterns

plt.figure(figsize=(15, 10))

# Plot full time series

plt.subplot(2, 2, 1)

plt.plot(df['ds'], df['y'], alpha=0.8)

plt.title('Historical Daily Egress Cost')

plt.ylabel('Cost (USD)')

# Monthly aggregation to show trend

df_monthly = df.set_index('ds').resample('M')['y'].mean()

plt.subplot(2, 2, 2)

plt.plot(df_monthly.index, df_monthly.values, marker='o')

plt.title('Monthly Average Egress Cost')

# Weekly pattern analysis

df['weekday'] = df['ds'].dt.day_name()

weekday_avg = df.groupby('weekday')['y'].mean()

plt.subplot(2, 2, 3)

plt.bar(weekday_avg.index, weekday_avg.values)

plt.title('Average Cost by Day of Week')

plt.xticks(rotation=45)

plt.tight_layout()

plt.show()

4. Data Splitting for Time-Series

# Split data chronologically (train on past, test on future)

split_point = len(df) - 90 # Hold out last 90 days for testing

df_train = df.iloc[:split_point]

df_test = df.iloc[split_point:]

print(f"Training period: {df_train['ds'].min()} to {df_train['ds'].max()}")

print(f"Test period: {df_test['ds'].min()} to {df_test['ds'].max()}")

5. Model Training with Prophet

from prophet import Prophet

# Configure Prophet for cost forecasting

model = Prophet(

yearly_seasonality=True,

weekly_seasonality=True,

daily_seasonality=False,

changepoint_prior_scale=0.05, # Controls trend flexibility

seasonality_prior_scale=10.0, # Controls seasonality flexibility

interval_width=0.95 # 95% confidence intervals

)

# Train the model

model.fit(df_train)

print("Prophet model trained successfully")

6. Forecasting and Prediction

# Create future dataframe and generate forecast

future = model.make_future_dataframe(periods=90) # 90 days ahead

forecast = model.predict(future)

# Extract key forecast components

forecast_cols = ['ds', 'yhat', 'yhat_lower', 'yhat_upper', 'trend', 'weekly']

print("Forecast generated with uncertainty intervals")

print(forecast[forecast_cols].tail())

7. Model Evaluation

from sklearn.metrics import mean_absolute_error

# Evaluate on test set

y_true = df_test['y'].values

y_pred = forecast.iloc[split_point:]['yhat'].values

# Calculate performance metrics

mae = mean_absolute_error(y_true, y_pred)

mape = np.mean(np.abs((y_true - y_pred) / y_true)) * 100

rmse = np.sqrt(np.mean((y_true - y_pred) ** 2))

print(f"Mean Absolute Error: ${mae:.2f}")

print(f"Mean Absolute Percentage Error: {mape:.2f}%")

print(f"Root Mean Square Error: ${rmse:.2f}")

# Check prediction interval coverage

forecast_test = forecast.iloc[split_point:]

within_interval = np.sum((y_true >= forecast_test['yhat_lower'].values) &

(y_true <= forecast_test['yhat_upper'].values))

coverage = (within_interval / len(y_true)) * 100

print(f"Prediction interval coverage: {coverage:.1f}%")

8. Extended Future Predictions

# Generate 6-month ahead forecast

extended_future = model.make_future_dataframe(periods=270) # 90 + 180 days

extended_forecast = model.predict(extended_future)

# Monthly cost summaries for planning

future_6_months = extended_forecast.iloc[len(df):]

future_6_months['month'] = future_6_months['ds'].dt.to_period('M')

monthly_forecast = future_6_months.groupby('month')['yhat'].agg(['sum', 'mean'])

print("Monthly cost forecasts for next 6 months:")

print(monthly_forecast.round(2))

Success Criteria

- Low MAPE (<15%): Accurate percentage-based forecasting for budget planning

- High Interval Coverage (>90%): Reliable uncertainty bounds for risk assessment

- Seasonal Pattern Detection: Model correctly identifies weekly and yearly patterns

- Trend Capture: Successfully models growth trends in egress usage

Next Steps & Extensions

1. Real-time Integration: Connect with cloud billing APIs for live cost monitoring

2. Multi-region Forecasting: Extend to predict costs across different cloud regions

3. Service-level Breakdown: Forecast costs by individual services or applications

4. Automated Alerting: Set up alerts when actual costs exceed prediction intervals

5. Cost Optimization: Identify peak usage periods for data transfer optimization

6. Budget Integration: Connect forecasts with financial planning and approval workflows

Files Structure

031_Cloud_Network_Egress_Cost_Prediction/

├── readme.md

├── cloud_network_egress_cost_prediction.ipynb

├── requirements.txt

└── data/

└── (Generated time-series cost data)

Running the Project

1. Install required dependencies from requirements.txt

2. Execute the Jupyter notebook step by step

3. Analyze forecast components to understand cost drivers

4. Use extended forecasts for 6-month budget planning

5. Implement real-time monitoring based on prediction intervals

This project demonstrates how time-series forecasting can transform cloud cost management by providing accurate egress cost predictions, enabling proactive budget planning and cost optimization strategies for cloud environments.